Pentafluorophenylphosphine complexes of platinum(II); crystal structure of *trans*-[PtCl₂(PEt₃){PPh₂(C₆F₅)}]

Malcolm J. Atherton, ^a John Fawcett, ^b John H. Holloway, ^b Eric G. Hope, ^b David R. Russell ^b and Graham C. Saunders *.^b

^a BNFL Fluorochemicals Ltd., Springfields, Salwick, Preston, UK PR4 0XJ

^b Department of Chemistry, University of Leicester, Leicester, UK LE1 7RH

DALTON

The reactions between the pentafluorophenylphosphines $PPh_x(C_6F_5)_{3-x}$ (x = 0-2) and the dimeric platinum(II) species [{Pt(PEt_3)Cl(μ -Cl)}₂] yielded the complexes *trans*-[PtCl₂(PEt₃){PPh_x(C₆F₅)_{3-x}}] (x = 0 **1**, 1 **2** or 2 **3**). The molecular structure of complex **3** has been determined by single-crystal X-ray crystallography, it crystallizes in the triclinic space group PI with Z = 4 with two independent molecules in the asymmetric unit, a = 12.067(2), b = 14.131(1), c = 16.393(2) Å, $\alpha = 76.92(1)$, $\beta = 79.08(1)$, $\gamma = 89.40(1)^{\circ}$. Variable-temperature ¹⁹F NMR spectroscopic studies, performed at 282.41 MHz, were carried out and showed that there is hindered rotation about the P–C₆F₅ bonds of complex **1**, which was frozen out at 197 K. There was no evidence of hindered rotation about the P–C bonds of complexs **2** and **3** down to 184 K.

As part of our continuing study into the effects that the presence of fluorine at strategic sites in ligands can bestow upon transition-metal complexes, we have investigated rhodium and iridium complexes of $P(C_6F_5)_3^{1,2}$ $PPh(C_6F_5)_2^1$ and $PPh_2(C_6F_5)$.¹ We have found that, for bis(phosphine) complexes of rhodium(I), the ligand $P(C_6F_5)_3$ gives rise to dramatically different structural and spectroscopic properties from those of the ligands $PPh(C_6F_5)_2$ and $PPh_2(C_6F_5)$. In particular, [{RhCl- $[P(C_6F_5)_{3]_2}]_n$ is polymeric whereas $[{RhCl[PPh_x(C_6F_5)_{3-x}]_2}_2]$ (x = 1 or 2) are dimeric, and the absolute values of ${}^{1}J(\text{RhP})$ for trans-[RhCl(CO){PPh_x(C₆F₅)_{3-x}}₂] (x = 1 or 2) are similar, whilst that for *trans*-[RhCl(CO){ $P(C_6F_5)_3$ }] is considerably larger. We have extended our study to platinum(II) species of the form $[PtCl_2(PEt_3)L]$ (L = fluorinated phosphines) and we report here the synthesis and characterization of these complexes and the structure of *trans*-[PtCl₂(PEt₃){PPh₂(C_6F_5)}].

Results and Discussion

The reactions between the pentafluorophenylphosphines PPh_v- $(C_6F_5)_{3-x}$ (x = 0-2) and the dimeric platinum(II) species [{PtCl-(μ -Cl)(PEt₃)}₂] in refluxing acetone yielded the complexes *trans*-[PtCl₂(PEt₃){PPh_x(C₆F₅)_{3-x}}] (x = 0 1, 1 2 or 2 3). The complexes were characterized by elemental analyses, mass spectroscopy, ¹H, ¹⁹F and ³¹P NMR and IR spectroscopies (Table 1). The assignments of the phosphorus resonances were made by comparison of the ${}^{31}P$ and ${}^{31}P-{}^{1}H$ NMR spectra. The magnitude of the platinum-phosphorus coupling constant, 1 J(PtP), and for the complexes 1 and 2, the magnitude of the phosphorus-phosphorus coupling constant, ${}^{2}J(PP)$, confirm that each complex possesses mutually trans phosphine ligands. This is further confirmed by the molecular structure of complex 3 (Fig. 1), which was determined by single-crystal X-ray diffraction. The ³¹P-{¹H} NMR spectrum of **3** is second order exhibiting two signals at $\delta_{\mathbf{P}}$ 14.4 and 14.3, each with platinum satellites. A simulation of this spectrum give values of δ_{P} of 13.9 and 14.8 with absolute values for ¹J(PtP) of 2470 and 2615 Hz respectively, and an absolute value for 2J(PP) of 469 Hz. The assignment of the two resonances is difficult because of the very second-order nature of the spectrum. However, a careful inspection of the high frequency ¹⁹⁵Pt satellites in the undecoupled ³¹P NMR spectrum allows assignment of the higherfrequency resonance (δ_{P} 14.8) to the PEt₃ ligand, in line with that observed for complexes $\boldsymbol{1}$ and $\boldsymbol{2}.$ The values of $\delta_{\boldsymbol{P}}$ for the

Fig. 1 Molecular structure of one of the independent molecules of *trans*- $[PtCl_2(PEt_3){PPh_2(C_6F_5)}]$ **3**. Displacement ellipsoids are shown at the 30% probability level. The hydrogen atoms are omitted for clarity

fluorine-containing phosphine resonances of complexes **1**–**3** are *ca.* 50 ppm to higher frequency than those for the free ligands. The magnitude of ¹*J*[Pt–PPh_x(C₆F₅)_{3–x}] increases in the order **1** < **2** < **3**, which is consistent with previous observations and is accounted for by the expected increase in the C–P–C angles, and thus lower s-character of the Pt–P bond, as C₆H₅ is replaced by C₆F₅.^{3.4} (This series differs significantly from the sequence of the absolute values of the rhodium–phosphorus coupling constants, ¹*J*(RhP), for the complexes *trans*-[RhCl(CO){PPh_x-(C₆F₅)_{3-x}}], in which ¹*J*(RhP) for the complexes *x* = 1 and 2 are similar and that for *x* = 0 is considerably greater.¹) The value of δ and the magnitude of ¹*J*(PtP) for the PEt₃ ligand follow the order **1** > **2** > **3**. The magnitude of ²*J*(PP) follows the same order.

The structure of complex **3** possesses two independent molecules in the asymmetric unit. Selected bond lengths, bond angles and torsion angles are given in Table 2. The *trans* geometry of the complex is confirmed by the crystal structure with P–Pt–P angles of *ca.* 178° and Cl–Pt–Cl angles of *ca.* 174°. The P–Pt–Cl angles lie in the range 88.25(9)–92.93(7)°. The two independent molecules within the asymmetric unit possess Table 1 Analytical, mass spectral and NMR spectroscopic data for compounds 1-3

Compound	Analysis (%) ^a and m/z^b	NMR Spectroscopy ^c
1 ^{<i>d</i>}	C, 29.6 (31.5); H, 2.0 (1.65) 915 (M^+), 880 ([$M - Cl$] ⁺), 843 ([$M - 2Cl - 2H$] ⁺)	¹ H: 1.97 (6 H, m, CH ₂), 1.20 [9 H, dt, ³ <i>J</i> (PH) 17.5, ³ <i>J</i> (HH) 7.6, CH ₃] ¹⁹ F: -126.18 (6 F, br m, <i>o</i>), -145.41 (3 F, unresolved t, <i>p</i>), -159.29 (6 F, m, <i>m</i>) ¹⁹ F(197 K): -120.65 (2 F, m, <i>o</i>), -127.97 (2 F, m, <i>o</i>), -130.70 (2 F, m, <i>o</i>), -142.14 (2 F, m, <i>p</i>), -144.30 (1 F, m, <i>p</i>), -158.29 (2 F, vt, <i>J</i> 23.2, <i>m</i>), -158.77 (2 F, vt, <i>J</i> 20.7, <i>m</i>), -159.50 (2 F, m, <i>m</i>) ³¹ P-{ ¹ H}: 18.8 [d, ² <i>J</i> (PP) 532, ¹ <i>J</i> (PtP) 2918, PEt ₃], -18.1 [d, ² <i>J</i> (PP) 532, ¹ <i>J</i> (PtP) 2255, P(C E) 1
2	C, 35.1 (34.9); H, 2.4 (2.4) 826 ($[M + H]^+$), 791 ($[M - Cl + H]^+$), 755 ($[M - 2Cl]^+$)	^{F (C₆<i>t</i>⁻ <i>s</i>/₃] ¹H: 7.90 (2 H, m, PPh), 7.52 (1 H, m, <i>p</i>), 7.45 (2 H, m, PPh), 1.98 (6 H, m, CH₂), 1.22 [9 H, dt, ³<i>J</i>(PH) 17.0, ³<i>J</i>(HH), 7.7, CH₃] ¹⁹F: -124.88 [4 F, dm, ³<i>J</i>(F_oF_m) 19.3, <i>o</i>], -147.13 [2 F, tm, ³<i>J</i>(F_mF_p) 20.8, <i>p</i>], -159.95 (4 F, m, <i>m</i>)}
3	C, 39.4 (39.15); H, 3.5 (3.4) 736 $((M + H)^{+})$ 701 $((M - C) +$	³¹ P-{ ¹ H}: 16.7 [d, ² <i>J</i> (PP) 508, ¹ <i>J</i> (PtP) 2792, PEt ₃], 0.8 [d, ² <i>J</i> (PP) 508, ¹ <i>J</i> (PtP) 2344, PPh(C ₆ F ₅) ₂] ¹ H: 7.97 (4 H, m, PPh ₂), 7.43 (6 H, m, PPh ₂), 2.01 (6 H, m, CH ₂), 1.25 [9 H, dt, ³ <i>J</i> (PH) 17.3, ³ <i>I</i> (HH) 7.4 CH.]
	$H]^+), 665 ([M - 2Cl]^+)$	$ \begin{array}{l} {}^{10}\mathrm{F}_{1} - 124.80 \left[2 \mathrm{F}_{2} \mathrm{dm}_{3} {}^{3} \mathcal{J}(\mathrm{F}_{o}\mathrm{F}_{m}) 20.8, o \right], -149.39 \left[1 \mathrm{F}_{1} \mathrm{tm}_{3} {}^{3} \mathcal{J}(\mathrm{F}_{m}\mathrm{F}_{p}) 20.7, p \right], -161.05 \left[2 \mathrm{F}_{2} \mathrm{dm}_{3} {}^{3} \mathcal{J}(\mathrm{F}_{m}\mathrm{F}_{p}) \approx {}^{3} \mathcal{J}(\mathrm{F}_{m}\mathrm{F}_{o}) 20.9, m \right] \\ {}^{31}\mathrm{P} - \{ {}^{1}\mathrm{H} \} \mathrm{ABX} \mathrm{pattern}, 14.8 \left[{}^{2} \mathcal{J}(\mathrm{PP}) 469, {}^{1} \mathcal{J}(\mathrm{PtP}) 2615, \mathrm{PEt}_{3} \right], 13.9 \left[{}^{2} \mathcal{J}(\mathrm{PP}) 469, {}^{1} \mathcal{J}(\mathrm{PtP}) 2470, \mathrm{PPh}_{2}(\mathrm{C}_{6}\mathrm{F}_{5}) \right]^{*} \end{array} $

^{*a*} Required values are given in parentheses. ^{*b*} FAB mass spectra in *m*-nitrobenzyl alcohol matrix. ^{*c*} Recorded in CDCl₃ at 298 K, unless stated otherwise. Data given as: chemical shift (δ) [relative intensity, multiplicity (*J* in Hz), assignment], d = doublet, t = triplet, vt = virtual triplet, m = multiplet. ^{*d*} Samples of **1** were contaminated with small amounts of [{PtCl(μ -Cl)(PEt₃)}₂], repeated recrystallizations failed to give satisfactory analysis. ^{*c*} Values obtained from simulation.

Table 2Selected bond lengths (Å), angles (°) and torsion angles (°)with estimated standard deviations (e.s.d.s) in parentheses for *trans*- $[PtCl_2(PEt_3){PPh_2(C_6F_5)}]$ **3**

Pt(1)-Cl(1)	2.305(2)	Pt(2)-Cl(1a)	2.303(2)
Pt(1)-Cl(2)	2.307(2)	Pt(2)-Cl(2a)	2.318(2)
Pt(1) - P(1)	2.318(2)	Pt(2)-P(1a)	2.322(2)
Pt(1) - P(2)	2.299(2)	Pt(2)-P(2a)	2.300(2)
P(1)-C(11)	1.852(8)	P(1a) - C(11a)	1.849(9)
P(1)-C(21)	1.802(9)	P(1a)-C(21a)	1.809(9)
P(1) - C(31)	1.814(8)	P(1a) - C(31a)	1.813(8)
	.,		. ,
Cl(1)-Pt(1)-Cl(2)	174.03(9)	Cl(1a)-Pt(2)-Cl(2a)	173.45(9)
P(1)-Pt(1)-Cl(1)	92.93(7)	P(1a)-Pt(2)-Cl(1a)	91.58(7)
P(1)-Pt(1)-Cl(2)	88.61(8)	P(1a)-Pt(2)-Cl(2a)	89.43(7)
P(2)-Pt(1)-Cl(1)	88.25(9)	P(2a)-Pt(2)-Cl(1a)	88.31(8)
P(2)-Pt(1)-Cl(2)	90.21(9)	P(2a)-Pt(2)-Cl(2a)	90.40(8)
P(1)-Pt(1)-P(2)	178.82(9)	P(1a)-Pt(2)-P(2a)	117.52(9)
Pt(1)-P(1)-C(11)	113.8(2)	Pt(2) - P(1a) - C(11a)	112.8(2)
Pt(1)-P(1)-C(21)	112.9(3)	Pt(2)-P(1a)-C(21a)	111.0(3)
Pt(1)-P(1)-C(31)	117.6(3)	Pt(2)-P(1a)-C(31a)	118.4(3)
C(11)-P(1)-C(21)	105.3(4)	C(11a)-P(1a)-C(21a)	105.7(4)
C(11)-P(1)-C(31)	100.2(4)	C(11a)-P(1a)-C(31a)	100.9(4)
C(21)-P(1)-C(31)	105.7(4)	C(21a)-P(1a)-C(31a)	107.0(4)
C(11)-P(1)-Pt(1)-Cl(1)	-2.6 C(11)	la)-P(1a)-Pt(2)-Cl(1a)	8.1
Pt(1)-P(1)-C(11)-C(12) 111.1 Pt(2	-P(1a)-C(11a)-C(12a)	74.1
Pt(1)-P(1)-C(11)-C(16) -67.1 Pt(2	-P(1a)-C(11a)-C(16a)	-104.2
Pt(1)-P(1)-C(21)-C(22) 158.4 Pt(2	-P(1a)-C(21a)-C(22a)	-165.6
Pt(1)-P(1)-C(21)-C(26) -24.0 Pt(2	-P(1a)-C(21a)-C(26a)	19.0
Pt(1)-P(1)-C(31)-C(32) 156.5 Pt(2	-P(1a)-C(31a)-C(32a)	15.5
Pt(1)-P(1)-C(31)-C(36) -22.2 Pt(2	-P(1a)-C(31a)-C(36a)	-160.0

Pt–PPh₂(C₆F₅) bond lengths which are identical within experimental error. The Pt–PEt₃ bond lengths in the two unique molecules are also identical, and they are shorter than the Pt–PPh₂(C₆F₅) bonds by *ca.* 0.02 Å. In both molecules the planes defined by the Pt–PPh₂(C₆F₅) and P–C₆F₅ bonds are almost coplanar with the PtP₂Cl₂ plane [*i.e.* the Cl(1)–Pt–P–C₆F₅ torsion angles are close to 0°]. Both molecules show a similar disposition of the phenyl rings about the Pt–P axis. The planes defined by the C₆H₅ rings are twisted by *ca.* 20° from parallel with the Pt–P bond giving the Pt–P–C–C torsion angles close to 20 and 160° for each ring. The plane defined by the C₆F₅ ring is twisted away from perpendicular to the Pt–P bond at *ca.* 20° such that the absolute Pt–P–C–C torsion angles are *ca.* 70 and 110°. The P–C bond lengths of the PPh₂(C₆F₅) ligand are the same within experimental error. Both Pt–P–C₆F₅ angles are *ca.*

Fig. 2 Variable-temperature ^{19}F NMR spectra of trans-[PtCl₂(PEt₃)- {P(C₆F₅)₃] 1 in CDCl₃ at 282.41 MHz

113° with each unique molecule possessing one smaller Pt–P–C₆H₅ angle at *ca.* 112° and one larger angle of *ca.* 118°. These values may be compared to those in the platinum(II) complex *trans*-[PtMe{PPh₂(C₆F₅)}(OC₆F₄PPh₂-2)],⁵ in which the P–C₆F₅ bond is significantly longer than the P–C₆H₅ bonds and the Pt–P–C₆F₅ angle of 109.7(3)° is considerably smaller than the Pt–P–C₆H₅ angles of 114.4(2) and 116.8(2)°. The C–P–C angles of the PPh₂(C₆F₅) ligand in **3** lie in the range 100.2(4)–107.0(4)°. The bond lengths and angles of the C₆F₅ rings in the structure of **3** are similar to those in *trans*-[PtMe{PPh₂(C₆F₅)}(OC₆F₄PPh₂-2)].

The ¹⁹F NMR spectrum of complex **1**, recorded at 282.41 MHz, in CDCl₃ at 298 K shows three resonances at $\delta_{\rm F}$ –126.18, –145.41 and –159.29 assigned to the *o*-, *p*- and *m*-fluorine atoms respectively. The resonance assigned to the *o*-fluorines is broad, indicative of a fluxional process. At 348 K the *o*-fluorine resonance is considerably sharper. Upon cooling from 298 K the three resonances broaden significantly and at 197 K there are eight sharp resonances (Fig. 2, Table 1). The presence of only two resonances at δ –140.0 to –145.0, with intensities in a ratio of 2:1, assigned to the *p*-fluorines is consistent with two equivalent and one unique C₆F₅ ring (Fig. 3, F_h and F_c). The presence of three resonances at δ –118.0 to –132.0, with equal intensities, assigned to the *ortho* fluorine atoms and three resonances.

Fig. 3 Diagrammatic representation of the arrangement of the C_6F_5 rings of $P(C_6F_5)_3$ in trans- $[PtCl_2(PEt_3)\{P(C_6F_5)_3\}]$ 1 at the low-temperature limit

ances at δ -156.0 to -160.0, with equal intensities, assigned to the meta fluorine atoms is consistent with the two ortho fluorine atoms on the unique C_6F_5 ring being equivalent (F_a), the two meta fluorine atoms on the unique C_6F_5 ring being equivalent $(F_{\rm b})$, and the two *ortho* fluorine atoms on each equivalent ring being non-equivalent (F_d and F_e) and the two meta fluorine atoms on each equivalent ring being non-equivalent (F_f and F_{y}). These data are similar to those of the low-temperature ¹⁹F NMR spectra of *trans*-[PtCl₂(PPh₃){P(C₆F₅)₃}] and *trans*- $[PtBr_2(PPhMe_2)\{P(C_6F_5)_3\}]^3$ and are consistent with hindered rotation about the $P\text{-}C_6F_5$ bonds of the two equivalent C_6F_5 rings. It is not essential to infer hindered rotation about the unique P-C₆F₅ bond to explain these data, but investigations into the molecular dynamics of *trans*-platinum(II) bis(phosphine) complexes, in particular trans-[PtCl(Ph)(PMePh2)- $\{P(C_6F_5)_3\}$,³ indicate that there is hindered rotation about all the P–C bonds of the $P(C_6F_5)_3$ ligand in this case. It could well be that this is also the case for complex **1**. It seems likely that, at the low-temperature limit, the $P(C_6F_5)_3$ ligand adopts a conformation where the plane of the unique C₆F₅ ring lies almost perpendicular to the Pt-P bond, such that the two Pt-P-C-C torsion angles are close to 90 and -90° , and the pair of identical C₆F₅ rings adopt conformations twisted from parallel to the Pt-P bond by the same amount such that the absolute values of the Pt-P-C-C torsion angles for each ring are very different. Such a conformation is, however, not consistent with conformations adopted by the $P(C_6F_5)_3$ ligands of the four-co-ordinate, bis(phosphine) complexes trans-[IrBr(CO){ $P(C_6F_5)_3$ }],² trans- $[PtX_{2}{P(C_{6}F_{5})_{3}}] (X = Cl^{6} \text{ or } I^{7}) \text{ and } trans - [PdCl_{2}{P(C_{6}F_{5})_{3}}]^{8}$ in the solid state. In these complexes the $P(C_6F_5)_3$ ligands adopt conformations in which one C_6F_5 ring is parallel to the Pt–P bond (absolute Pt-P-C-C torsion angles of 0-13 and 172-180°) and two C₆F₅ rings lie twisted by ca. 30° from perpendicular to the Pt-P bond (absolute Pt-P-C-C torsion angles of 51-67 and 105–120°). The compounds *trans*-[PtX₂{ $P(C_6F_5)_3$ }₂] (X = Cl or I) 3 show similar fluxional behaviour to $\mathit{trans}\text{-}[PtCl_{2}\text{-}$ $\{P(C_6F_5)_3\}L\}$ (L = PMe₃ or PPh₃)³ and trans-[PtBr₂(PPhMe₂)- $\{P(C_6F_5)_3\}$ and thus it appears that, in four-co-ordinate platinum(11) complexes, the $P(C_6F_5)_3$ ligand adopts a different conformation in solution to that in the solid state. A variabletemperature ³¹P-{¹H} NMR spectroscopic study (121.50 MHz) of complex 1 in CD₂Cl₂ shows no fluxional processes, with only a slight broadening of the signals at 184 K. Thus, there is no evidence to suggest hindered rotation about the Pt-P bonds in complex **1** under the conditions of the study.

Complexes 2 and 3 do not show fluxional behaviour similar to that of 1. The $^{19}\mathrm{F}$ (282.41 MHz) and $^1\mathrm{H}$ (300.14 MHz) NMR spectra show only sharp resonances at 298 K, and at 184 K in CD₂Cl₂ no significant broadening of either the $^{19}\mathrm{F}$ or $^{1}\mathrm{H}$ spectroscopic resonances is observed. The replacement of one C₆F₅ group in P(C₆F₅)₃ by a phenyl ring is evidently sufficient to allow essentially unhindered rotation about all the P–C bonds.

In summary, the complexes *trans*-[PtCl₂(PEt₃){PPh_x-(C₆F₅)_{3-x}}] have been synthesized and their molecular dynamics studied by variable-temperature ¹H, ¹⁹F and ³¹P NMR spectroscopy. Our investigation shows that the electronic properties of the ligands in these complexes vary regularly, unlike those in the system *trans*-[RhCl(CO){PPh_x(C₆F₅)_{3-x}}],¹ but that rotation about the P–C bonds of P(C₆F₅)₃ in complex **1** is considerably more hindered than that of PPh(C₆F₅)₂ and PPh₂(C₆F₅) in complexes **2** and **3** respectively.

Experimental

Physical measurements

The ¹H, ¹⁹F and ³¹P NMR spectra were recorded on a Bruker AM300 spectrometer at 300.14, 282.41 and 121.50 MHz respectively, ¹H referenced internally using the residual protio solvent resonance relative to tetramethylsilane (δ 0), ¹⁹F externally to CFCl₃ (δ 0) and ³¹P externally to 85% H₃PO₄ (δ 0). Infrared spectra were recorded as Nujol mulls between KBr plates on a Digilab FTS40 Fourier-transform spectrometer. Elemental analyses were performed by Butterworth Laboratories Ltd. and FAB mass spectra were recorded on a Kratos Concept 1H mass spectrometer.

Materials

The phosphines $P(C_6F_5)_3$, $PPh(C_6F_5)_2$ and $PPh_2(C_6F_5)$ (Fluorochem) were used as supplied. The platinum complex [{PtCl-(μ -Cl)(PEt_3)}₂] was prepared as described previously.⁹ Light petroleum (b.p. 40–60 °C) was used throughout.

Preparations

trans-[PtCl₂(PEt₃){P(C_6F_5)₃]] **1.** A slurry of [{PtCl(μ -Cl)-(PEt₃)}₂] (0.24 g, 0.31 mmol) and P(C_6F_5)₃ (0.27 g, 0.50 mmol) in acetone (30 cm³) was refluxed for 1 min to give a pale yellow solution. The solution was allowed to cool and filtered. The solvent was removed by rotary evaporation to give **1** as a yellow solid, which was dried *in vacuo*. Yield 0.17 g, 31%. IR: 1646m, 1520s, 1488s, 1391m, 1297m, 1264w, 1239w, 1150w, 1097s, 1038m, 1012w, 986s, 856w, 785m, 739w, 724w, 639w, 631w, 589w, 520w and 459w cm⁻¹.

trans-[PtCl₂(PEt₃){PPh(C₆F₅)₂] **2.** A slurry of [{PtCl- $(\mu$ -Cl)(PEt₃)₂] (0.15 g, 0.20 mmol) and PPh(C₆F₅)₂ (0.17 g, 0.38 mmol) in acetone (50 cm³) was refluxed for 5 min to give a pale yellow solution. The solution was allowed to cool, filtered and concentrated by rotary evaporation to *ca.* 10 cm³. Addition of light petroleum (30 cm³) afforded yellow crystals of **2**, which were washed with light petroleum and dried *in vacuo.* Yield 0.13 g, 41%. IR: 1644m, 1522s, 1488s, 1437m, 1413w, 1394m, 1312w, 1293m, 1260w, 1096s, 1040m, 979s, 849w, 772m, 744m, 724m, 704w, 688m, 633m, 588w, 524m, 513w, 487w, 476m and 451w cm⁻¹.

trans-[PtCl₂(PEt₃){PPh₂(C_6F_5)}] **3.** A slurry of [{PtCl(μ -Cl)-(PEt₃) $_2$] (0.145 g, 0.19 mmol) and PPh₂(C_6F_5) (0.122 g, 0.35 mmol) in acetone (50 cm³) was refluxed for 5 min to give a pale yellow solution. The solvent was removed by rotary evaporation to yield a yellow solid, which was recrystallized from dichloromethane. Yield 0.06 g, 21%. IR: 1645m, 1522s, 1488s, 1439w, 1412w, 1391w, 1290m, 1261w, 1085s, 1040m, 979s, 851w, 841w, 770m, 743m, 724m, 704w, 689m, 632m, 587w, 525m, 511m, 486w, 475w, 449w and 430m cm⁻¹.

Crystal-structure determination of complex 3

Crystal data and data collection parameters. $C_{24}H_{25}Cl_2F_5$ -P₂Pt, M = 736.37, triclinic, a = 12.067(2), b = 14.131(1), c = 16.393(2) Å, $\alpha = 76.92(1)$, $\beta = 79.08(1)$ $\gamma = 89.40(1)^{\circ}$, U = 2672.0(6) Å³ (by least-squares refinement on diffractometer angles from 28 centred reflections, $10.0 < 2\theta < 24.6^{\circ}$), T = 190(2) K, space group $P\bar{1}$, graphite-monochromated Mo-K α radiation, $\lambda = 0.710$ 73 Å, Z = 4 with two independent molecules in the asymmetric unit, $D_c = 1.831$ g cm⁻¹, F(000) = 1424, dimensions $0.48 \times 0.41 \times 0.21$ mm, μ (Mo-K α) = 5.618 mm⁻¹, semiempirical absorption correction based on ψ scans, maximum and minimum transmission factors 0.95 and 0.365, Siemens P4 diffractometer, ω scans, data collection range $5.2 < 2\theta < 54.0^{\circ}$, $-1 \le h \le 14$, $-17 \le k \le 17$, $-20 \le l \le 20$, no crystal decay was detected from periodically measured check reflections; 11 607 reflections measured, 11 395 unique ($R_{int} = 0.0280$). The data were corrected for Lorentz and polarization effects.

Structure solution and refinement. Structure solution by Patterson methods was carried out using the SHELXTL PC program.¹⁰ Refinement by full-matrix least squares on F^2 was carried out using the program SHELXL 93.11 Ån initial data set collected at room temperature was solved satisfactorily except that all ethyl carbon atoms had excessive anisotropic parameters indicative of disorder which could not be adequately modelled. The highest residual electron density was 1.6 e Å⁻ lying in the bond between Pt(2) and Cl(2a), 1.3 Å from Pt(2). A second data set was collected from a new crystal at 190 K in an attempt to minimize the disorder. These data provided a molecular structure which displayed smaller, but still excessive, anisotropic displacement parameters for the ethyl groups suggesting that the disorder persists at 190 K. The final refinement allowed for disordered ethyl groups with restraints to the P-C [1.86(1) Å], C-C' [1.46(1) Å] and P-C' [2.80(5) Å] distances and isotropic displacement parameters. Essentially the disorder model allows two alternative sites for all 12 ethyl carbon atoms with 50% occupancy, but for three methylene carbon atoms [C(1), C(1b) and C(3b)] the alterative sites could not be resolved. All other non-hydrogen atoms were refined as anisotropic atoms. The hydrogen atoms of the disordered ethyl groups were not included in the refinement, all other hydrogen atoms were included in calculated positions (C-H = 0.96 Å) using a riding model. Final R1 = 0.0484 and wR2 = 0.1083 for 8266 observed reflections $[I > 2\sigma(I)]$ and R1 = 0.0798 and wR2 = 0.1221 (all data) for the 589 parameters and 33 restraints refined with largest Δ/σ 0.012, goodness of fit = 1.043. The highest residual electron density peak from this data set is 3.25 e Å⁻³ and, as with the room temperature data, is 1.3 Å from Pt(2), approximately on the Pt(2)-Cl(2a) bond. The residual density, although obviously an artefact in the data, does not appear to arise from absorption. Empirical absorption corrections based on ψ scan data from over 40 reflections from both crystals were applied. A DIFABS-type refinement¹² was attempted on the 190 K data, but did not result in any significant reduction in this residual density, indicating that this problem was not due to absorption. An analytical absorption correction was not possible as the crystal did not have clearly defined faces. An analysis of the weighting scheme over $|F_0|$ and $\sin \theta/\lambda$ was satisfactory.

Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Soc., Dalton Trans.*, 1997, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/533.

Acknowledgements

We thank K. S. Coleman for preliminary work, Dr. G. A. Griffith for assistance with the NMR spectroscopy experiments and the simulation, BNFL Fluorochemicals Ltd. (G. C. S.) and the Royal Society (E. G. H.) for support.

References

- 1 M. J. Atherton, K. S. Coleman, J. Fawcett, J. H. Holloway, E. G. Hope, A. Karaçar, L. A. Peck, D. R. Russell and G. C. Saunders, *J. Chem. Soc., Dalton Trans.*, 1995, 4029.
- 2 J. H. Holloway, E. G. Hope, D. R. Russell, G. C. Saunders and M. J. Atherton, *Polyhedron*, 1996, **15**, 173.
- 3 J. B. Docherty, D. S. Rycroft, D. W. A. Sharp and G. A. Webb, J. Chem. Soc., Chem. Commun., 1979, 336.
- 4 R. Mason and D. W. Meek, Angew. Chem., Int. Ed. Engl., 1978, 17, 183.
- 5 S. Park, M. Pointer-Johnson and D. M. Roundhill, *Inorg. Chem.*, 1990, **29**, 2689.
- 6 W. P. Schaefer, D. K. Lyon, J. A. Labinger and J. E. Bercaw, Acta Crystallogr., Sect. C, 1992, 48, 1582.
- 7 W. N. Hunter, K. W. Muir and D. W. A. Sharp, *Acta Crystallogr.,* Sect. C, 1986, **42**, 1743.
- 8 B. Berstch-Frank and W. Frank, Acta Crystallogr., Sect. C, 1996, 52, 328.
- 9 R. J. Goodfellow and L. M. Venanzi, J. Chem. Soc. A, 1965, 7533.
- 10 G. M. Sheldrick, SHELXTL PC, Release 4.2, Siemens Analytical X-Ray Instruments, Madison, WI, 1991.
- 11 G. M. Sheldrick, SHELXL 93, Program for Crystal Structure Refinement, University of Göttingen, 1993.
- 12 R. H. Blessing, Acta Crystallogr., Sect. A, 1995, 51, 33.

Received 6th December 1996; Paper 6/08253J